Prediction of magnetization dynamics in a reduced dimensional feature space setting utilizing a low-rank kernel method

نویسندگان

چکیده

We establish a machine learning model for the prediction of magnetization dynamics as function external field described by Landau-Lifschitz-Gilbert equation, partial differential equation motion in micromagnetism. The allows fast and accurate determination response to an which is illustrated thin-film standard problem. data-driven method internally reduces dimensionality problem means nonlinear reduction unsupervised learning. This not only makes time steps possible, but also decisively complexity process where states from simulated micromagnetic associated with different fields are used input data. use truncated representation kernel principal components describe between predictions. capable handling large training sample sets owing low-rank approximation matrix extension component analysis ridge regression. approach entirely shifts computations into reduced dimensional setting breaking down dimension thousands tens.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-rank decomposition meets kernel learning: A generalized Nyström method

Article history: Received 2 March 2016 Received in revised form 30 April 2017 Accepted 9 May 2017 Available online 15 May 2017

متن کامل

a swot analysis of the english program of a bilingual school in iran

با توجه به جایگاه زبان انگلیسی به عنوان زبانی بین المللی و با در نظر گرفتن این واقعیت که دولت ها و مسئولان آموزش و پرورش در سراسر جهان در حال حاضر احساس نیاز به ایجاد موقعیتی برای کودکان جهت یاد گیری زبان انگلیسی درسنین پایین در مدارس دو زبانه می کنند، تحقیق حاضر با استفاده از مدل swot (قوت ها، ضعف ها، فرصتها و تهدیدها) سعی در ارزیابی مدرسه ای دو زبانه در ایران را دارد. جهت انجام این تحقیق در م...

15 صفحه اول

seismic velocity analysis using low-rank approximation of the kernel function and a butterfly algorithm

velocity analysis is one of the most important step in seismic data processing. it affects not only many processing steps directly and indirectly, but also is known as a primary interpretation of the data. however, it can also be assumed as one of the most time consuming processing step. the conventional velocity analysis method measures the energy amplitude along hyperbolic trajectories within...

متن کامل

Space as a Semiotic Object: A Three-Dimensional Model of Vertical Structure of Space in Calvino’s Invisible Cities

Following the “spatial turn” of the last 3 decades in humanities and social sciences and the structure of semiotic object, this research studies space as the main semiotic object of Calvino’s (1972) Invisible Cities. Significance of this application resides in examining the possibility of providing a more concrete methodology based on the integration of Zoran’s (1984) 3 vertical levels of const...

متن کامل

Reduced Rank Space-Time Equalization

In wireless communication systems with antenna arrays the spatiotemporal channel can often be described by a low-rank model. By exploiting this information, corresponding low rank equalizers with reduced complexity can be designed. By applying such low rank equalizers to a set of uplink measurements, we demonstrate that the performance loss associated with the lower complexity is small.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2021

ISSN: ['1090-2716', '0021-9991']

DOI: https://doi.org/10.1016/j.jcp.2021.110586